Tuesday, September 16, 2008

Trace-to-Plane Capacitors

PCB traces, being composed of foil, form capacitance with other traces that they cross on other layers. For two traces crossing each other on adjacent planes, this is seldom a problem. Coincident traces (those that occupy the same routing on different layers), form a long, skinny capacitor. The formula for capacitance is shown below.


For example, if the capacitance formula is applied to the following trace:
  1. 4 Layer board — signal routing next to ground plane
  2. Board layer thickness: 0.188 mm
  3. Trace Width: 0.75 mm
  4. Trace Length: 7.5 mm
A typical value for ER of FR–4 PCB material is 4.5. Due to the variations of material from which an FR–4 board can be fabricated, this value is not guaranteed, but should be in the range of 4 to 5.



The capacitance between these traces would be 1.1 pF. Of course, the antenna effect on a 7.5-mm trace would be devastating, so this example is a bit extreme. Ignoring the antenna effects for now, there are cases in which even a very small parasitic capacitance like 1 pF is unacceptable. Figure 17–12 dramatically illustrates the effect of 1 pF capacitance occurring at the inverting input of the op amp. It causes a doubling of the output amplitude near the bandwidth limit of the op amp. This is an invitation to oscillation, especially since the trace is an efficient antenna above 180 MHz.


There are numerous fixes to the problem above. The most obvious would be to shorten the length of the traces. Another not-so-obvious fix would be to use a different trace width. There is no reason why an inverting op amp trace has to be 0.75 mm wide — it carries almost no current. If the trace length is reduced to 2.5 mm (one third as long) and the trace width is changed to 0.188 mm (1/4 as wide), the capacitance becomes 0.1 pF — much less significant in the example above. Another fix is to remove the ground plane under the inverting input and the traces leading to it.

The inverting input of op amps, particularly high-speed op amps, is especially prone to oscillation in high gain circuits. This is due to unwanted capacitance on the input stage. It is important to minimize capacitance on this input by reducing trace width and placing components as close as possible to this input. If this input still oscillates, it may be necessary to scale the input and feedback resistors lower by a decade or two to change the resonance of the circuit. Scaling the resistors up will seldom help, as the problem is also related to the impedance of the circuit. If filter components are involved, they will also have to be scaled to avoid changing the filter characteristics of the circuit. The power consumption of the circuit will also increase if resistors are lowered.

No comments:

Post a Comment