Tuesday, September 16, 2008

Capacitor High-Frequency Performance

High-frequency performance of capacitors is approximated by the schematic shown below


Therefore, a 10-μF electrolytic capacitor has a reactance of 1.6 Ω at 10 kHz, and 160-μΩ
at 100 MHz. Right?

In reality, one will never see the 160 μΩ with the electrolytic capacitor. Film and electrolytic capacitors have layers of material wound around each other, which creates a parasitic inductance. Self-inductance effects of ceramic capacitors are much smaller, giving them a higher operating frequency. There is also some leakage current from plate to plate, which appears as a resistance in parallel with the capacitor, as well as resistance within the plates themselves, which add a parasitic series resistance. The electrolyte itself in electrolytic capacitors is not perfectly conductive (to reduce leakage current). These resistances combine to create the equivalent series resistance (ESR). The capacitors used for decoupling should be low ESR types, as any series resistance limits the effectiveness of the capacitor for ripple and noise rejection. Elevated temperatures also severely increase ESR, and can be permanently destructive to capacitors. Therefore, if an aluminum electrolytic will be subjected to high temperatures, use the high-temperature grade (105C), not the low temperature grade (85C).



For leaded parts, the leads themselves also add a parasitic inductance. For small values of capacitance, it is important to keep the lead lengths short. The combination of parasitic inductance and capacitance can produce resonant circuits! Assuming a lead self-inductance of 8 nH/cm (see the following paragraphs), a 0.01-μF capacitor with two 1-cm leads will resonate at 12.5 MHz. This effect was well known to engineers many decades ago, who designed vacuum tube-based products with leaded components. Woe be to any hobbyist restoring antique radios that is unaware of this effect!

If electrolytic capacitors are used in a design, make sure that the polarity is correctly observed. The positive terminal of the capacitor must be connected to the more positive of two dc potentials. If there is any doubt whatsoever which polarity is correct, design calculations must continue until it is known, or a prototype must be built. Incorrect polarity of electrolytic capacitors will cause them to conduct dc current, in most cases destroying the part — and probably the rest of the circuit as well. If there is a rare case in which there will be both polarities present, use a nonpolarized electrolytic (which is constructed by connecting two polarized electrolytic capacitors in series). Of course, one can always connect two capacitors in series on the PCB, keeping in mind that the effective capacitance will be cut in half for equal values of capacitor.

No comments:

Post a Comment